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Abstract— Small unmanned aircraft systems (UAS) must
be able to detect and avoid conflicting traffic, an especially
challenging task when the threat is another small UAS. Collision
avoidance requires trajectory prediction and the performance
of a collision avoidance system can be improved by extending
the prediction horizon. We describe an algorithm that predicts
the trajectory of a small, fixed-wing UAS using an estimate
of its orientation. First, a computer vision algorithm locates
specific feature points of the threat aircraft in an image. Next,
the POSIT algorithm uses these feature points to estimate
the pose (position and attitude) of the threat. A sequence of
pose estimates is then used to predict the trajectory of the
threat aircraft in order to avoid a collision. To assess the
algorithm’s performance, the predictions are compared with
predictions based solely on position estimates for a variety
of encounter scenarios. Simulation and experimental results
indicate that trajectory prediction using orientation estimates
provides quicker response to a change in the threat aircraft
trajectory and better prediction and avoidance performance.

I. INTRODUCTION

As the private and commercial use of small unmanned

aircraft systems (UAS) continues to expand, low altitude air

traffic will become more congested raising the risk of mid-air

collisions that may result in injuries to people or damage to

property below. For many years, commercial manned aircraft

have used the Traffic Collision Avoidance System (TCAS) to

help ensure that aircraft do not collide in flight [1]. TCAS and

similar collision avoidance systems are useful, however, only

when every aircraft in the airspace uses the technology. Small

UAS typically operate at low altitude where collision threats

include general aviation aircraft and other UAS, which may

not carry their own collision avoidance equipment [2]. In

these scenarios, it is urgent that the small unmanned aircraft

be able to sense and avoid these threats.

Sense and Avoid (SAA) technologies have been developed

to mitigate the risk of collision between UAS and other

aircraft [3], [4]. Researchers have explored other active

communication-based methods besides TCAS, such as Au-

tomatic Dependent Surveillance-Broadcast (ADS-B) [3], but

any method that depends on standardized communication

equipment is inherently susceptible to non-compliant aircraft.

Active sensing, such as radar [5] and lidar [6], has been

investigated for collision avoidance, but these sensors are

typically expensive, heavy, and power hungry, at least at
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the scale of a small UAS. Cameras provide a low-cost,

low-power alternative and the technology is advancing at a

rapid pace thanks to intense competition within the consumer

electronics industry. While the utility of cameras is limited

to visual flight rules (VFR) conditions, these conditions

are typical for current small UAS operations. Here, we

investigate the ability of a single, monocular camera to

provide actionable SAA data for a fixed-wing threat aircraft.

To bound the scope of the problem, we assume the image

quality is sufficient to enable classification and, moreover,

that this classification task has been accomplished so that

the threat aircraft is known. Given this knowledge of the

threat, the remaining challenge is to predict its motion.

For a camera with sufficient resolution, an unobstructed

image can provide detail that other sensors, such as radar

or lidar, cannot provide. Earlier work using cameras [7], [8],

[9] sought to determine direction (azimuth and elevation) to a

threat, but not orientation. As the size, weight, and power and

the cost (SWaP-C) of cameras has continued to drop, while

resolution and image quality has continued to improve, and

as computer vision methods have continued to develop, it has

become possible to extract more information (e.g., aircraft

attitude) from an image than was possible in the past.

If a threat aircraft flies along a straight path, it is not hard

to predict its future trajectory using only position data. If

the threat begins to turn, however, then trajectory predictions

based solely on position will accrue error; if the error is suffi-

ciently large, it could compromise the prediction algorithm’s

ability to inform an avoidance decision. Here, we show

that the additional information obtained by estimating the

threat aircraft orientation enables a more accurate prediction

of the threat aircraft trajectory. Specifically, we present an

algorithm that estimates the threat aircraft’s roll angle and

uses this information, together with a velocity estimate, to

estimate the turn rate. The turn rate is then used to predict the

trajectory over a fixed time horizon. The prediction method

compares favorably with a more conventional method that

uses only position data.

Section II describes the computer vision methods, includ-

ing feature point detection and pose estimation. Section III

describes the aircraft motion model and two approaches to

prediction: the proposed approach and a more conventional

approach for comparison. An avoidance algorithm is pre-

sented in Section IV and Section V describes the results

from simulations and flight tests. Finally, Section VI presents

conclusions and summarizes ongoing work.
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II. COMPUTER VISION TECHNOLOGY

In order to determine the pose of a fixed-wing aircraft

observed by a camera, we first use a computer vision

algorithm to detect five distinguished feature points: the nose,

the two wing tips, and the two tips of the horizontal stabilizer.

These points are assumed to be visible in the image; the

effect of occluded feature points is a topic of ongoing study.

It is also assumed that the geometry of the observed aircraft is

known, having been determined, for example, using a pattern

recognition algorithm. Finally, the pose estimation algorithm

POSIT is used to determine the position and attitude of the

observed aircraft.

A. Aircraft feature point detection

Within a given image containing a threat aircraft, the

image is cropped to the region of interest, converted to

grayscale, and then processed using the Canny Edge De-

tection algorithm [10]. A modified, bi-directional derivative

of the grayscale point values is computed and all pixels

below a threshold value are removed. This process leaves

a binary image in which points with a value of 1 represent

high contrast gradients (i.e., edges).

Fig. 1: Aircraft feature point detection

Edges detected using the preceding method are assumed

to be either the exterior edges of the aircraft image or

aircraft contours contained within the polygon defined by

these exterior edges. Next, we find the largest pentagon

containing the identified edges [11], [12] and associate the

vertices of this pentagon with the five feature points required

by the POSIT algorithm. Because the geometry of the threat

aircraft is assumed to be known, the pixel distance between

these feature points can be used to estimate the distance from

the camera to the threat aircraft.

B. Pose estimation

Pose estimation is accomplished using the POSIT algo-

rithm [13], which determines the rotation matrix relating

a camera-fixed reference frame to a reference frame fixed

in the threat aircraft. We call the threat aircraft frame the

“body” frame and let RBC represent the rotation matrix

that maps free vectors from the camera frame to the body

frame. Similarly, we define a rotation matrix RCI that maps

free vectors from the inertial reference frame to the camera-

fixed reference frame; we assume that RCI is known, based

on sensor data available to the host aircraft. Finally, the

orientation of the threat aircraft with respect to inertial space

is represented by the rotation matrix RBI , which maps free

vectors from the inertial reference frame to the body frame.

RBI = RBCRCI (1)

Fig. 2: Pose estimation geometry

III. TRAJECTORY PREDICTION ALGORITHM

A. Aircraft model

Having obtained the position and orientation of the threat

aircraft, one may estimate the turn rate using the airspeed and

roll angle. In this effort, constant-altitude flight is assumed

and a two-dimensional coordinated turn (CT) model [14]

is used. Although the CT model assumes constant speed

and turn rate, these values are updated using vision-based

estimates – a “quasi-steady CT” model.

Treating the threat as a particle moving in the horizontal

plane, we define the position (x and y), heading (ψ), and

speed (v) as well as the wind disturbance components (wx

and wy). Assuming that the aircraft speed and turn rate

ω = ψ̇ remain constant, and defining the state vector X =
[x, ẋ, y, ẏ]T , we obtain the following motion model:

Ẋ = A(ω)X +W (ω) (2)

where

A(ω) =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 −ω
0 0 0 1
0 ω 0 0

⎤
⎥⎥⎦ and W (ω) =

⎡
⎢⎢⎣

0
ωwy

0
−ωwx

⎤
⎥⎥⎦

The turn rate ω of the threat aircraft varies, but we assume

this variation is sufficiently slow that the model (2) remains

valid even with varying ω. We estimate the turn rate using

two approaches. In the first approach, ω is inferred from the

recent position history. In the second, the airspeed and roll

angle are estimated in order to compute the turn rate from

the CT model. Details are given in Sections III-C and III-B.

B. Position only (PO) approach

Assuming constant-altitude and constant-speed motion, the

turn rate at the kth time-step can be inferred from the speed
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V and centripetal acceleration �ak as follows:

ωk =
‖ �ak‖
V

(3)

The resulting turn rate can then be used to predict the

trajectory over some time horizon using (2). In implementa-

tion, the speed and centripetal acceleration may be estimated

numerically from the position history.

C. Position-plus-roll-angle (PPR) approach

Alternatively, the turn rate can be computed using the roll

angle of the threat aircraft, as obtained from pose estimation.

For a coordinated turn, there is a simple relationship between

the turn rate ω and the roll angle φ, assuming constant-

altitude, constant-speed flight [15]. The “load factor” at the

kth time-step is

nk =
1

cosφk
(4)

and the turn rate is

ωk =
g
√

n2
k − 1

V
(5)

where g is the specific force of gravity.

IV. AVOIDANCE ALGORITHM

Assuming the host aircraft flies at constant speed and

altitude, we adopt the CT model with turn rate as a con-

trol input. To determine avoidance paths, 61 potential host

aircraft paths (corresponding to bank angles between −30◦

and 30◦) are computed and compared with three potential

threat trajectories – a nominal prediction and two bounding

perturbations that allow for prediction error, to be discussed

shortly; see Figure 3.

Fig. 3: Potential collision paths (left) and safe paths (right)

Each host and threat aircraft trajectory prediction is a finite

time history (10 seconds, in this work). Comparing candidate

host trajectories with possible threat trajectories, one may

compute a “distance at closest point of approach” denoted

dCPA. If dCPA for a given candidate trajectory is less than

a threshold value called the safety radius Rd (500 ft, in this

case), then the corresponding turn rate (or roll angle) input is

considered dangerous. For avoidance, the smallest safe roll

angle input is adopted, to minimize the control effort required

for the avoidance maneuver.

Once the host aircraft has passed the point of closest

approach to the threat aircraft along its avoidance path,

the algorithm switches to the trajectory recovery phase. In

this phase, the host aircraft follows a line-of-sight guidance

strategy to recover its original path.

V. RESULTS

Pose estimation and trajectory prediction were imple-

mented using simulated data as well as experimental data

obtained during flight tests. Experimental data were obtained

during a Summer 2016 flight test campaign that was aimed

at creating a database of visual and radar encounter data for

several small UAS [16]. For this paper, the threat aircraft is

Virginia Tech’s eSPAARO. A PixHawk controller and a Piksi

RTK GPS unit mounted on the eSPAARO logged position.

In the preliminary tests described here, the Nikon D3200

digital camera used to image the eSPAARO was mounted

on a tri-pod, together with a second PixHawk unit, affixed to

the camera; a planned flight campaign is aimed at collecting

high quality air-to-air imagery.

A. Pose estimation results

The pose estimation experiment was conducted using im-

ages obtained from the ground camera system, as described

in Section II-B. The results were compared with orien-

tation data from the eSPAARO avionics, expressed using

conventional Euler angles. Table I shows the average error

magnitude between the orientation estimates from the pose

estimation algorithm and direct measurements obtained from

16 encounters during flight tests. The pose estimation algo-

rithm provides reasonably accurate estimates of the threat

aircraft attitude. One source of error is the synchronization

error between the camera imagery and the camera-mounted

PixHawk. Also, the fact that the camera was mounted on

the ground resulted in an image set that was less rich

than would be obtained using air-to-air imagery. A flight

campaign planned for Fall 2017 will obtain a richer image

data set.

Fig. 4: Pose estimation

TABLE I: Average error of pose estimation experiments

Value Roll Pitch Yaw
Average Error Magnitude (◦) 3.4 2.7 11.6

B. Simulation setup

To assess the proposed prediction algorithm more thor-

oughly, two simulations were constructed: one for the PO

approach and another for PPR approach. The turn rate

estimate is a critical parameter for both approaches. In the

former case, it was determined solely from the position
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history. In the latter case, the estimated roll angle was used

as well. Simulations were performed with and without the

addition of zero-mean, Gaussian white noise to the position

and roll angle. Since the threat aircraft is assumed to be

known, there is no additional loss of generality in assuming

a known turn rate limit corresponding, for example, to a

structural load factor limit at the given speed. Equivalently,

we assume a roll angle magnitude limit of 45◦. We also

assume a roll rate magnitude limit of 10◦/s.
For the PO approach, the acceleration and velocity are

estimated at each time-step using the previous 5 consecutive

positions. The turn rate is computed from these values

using (6) at each time-step and substituting into (2). For the

PPR approach, the turn rate used in (2) is estimated from (5).

Fig. 5: Instantaneous distance error ek(t)

At each time-step, for each approach, the instantaneous

distance error between the predicted trajectory and the true

trajectory is computed over a 10 second horizon. The value

of this distance error at the kth time-step is denoted ek(t);
see Figure 5. If ek(t) grows quickly in its argument t, the

function predicts a rapid separation between the predicted

trajectory and the true trajectory beginning at time-step k.

To approximate ek(t), various functional forms were eval-

uated in terms of accuracy and complexity. Figure 6 indicates

that a 2nd order polynomial regression provides a good

approximation:

ek(t) = κt2 (6)

The coefficient κ then serves as a measure of the growth

of ek. The constant κ is computed for both the PO and

PPR approach at each time-step to compare the prediction

performance of two approaches and the results are described

in the next section.

Fig. 6: Representative distance error ek(t) with 2nd order

polynomial regressions.

Fig. 7: Simulation examples

C. Prediction simulation results

Figure 8 compares the PO and PPR prediction methods

for two simulation cases. Note that κ increases just before

time t = 10 seconds, when the aircraft begins to turn.

When the threat aircraft begins rolling at 10 seconds, both

prediction algorithms react to the changing turn rate and

correct the prediction so that κ decreases. We call the

time taken to correct the predicted trajectory the “prediction

correction time.” The prediction correction time in Table III

TABLE II: Simulation parameters

Parameter Values
Host aircraft speed (m/s) 100

Threat aircraft speed (m/s) 100
Turn rate change rate (deg/s) 10

Prediction range time (s) 10
Total simulation time (s) 30

Data frequency (Hz) 10

Position noise variance (m2) 0.5

Roll angle noise variance (deg2) 3
Wind speed (m/s) 2 - 4

Wind direction (deg) 0 - 360
Host roll angle control range (deg) [−30 - 30]

Safe radius (m) 152.4

indicates that κ in the PPR approach begins to recover,

on average, 2.4 seconds faster than the PO approach. For

small UAS flying in close proximity, the additional lead time

provided by the PPR approach could be critical in making an

avoidance decision. For the simulations that include noise,

this recovery time is more difficult to define and compute, but

a moving average, as shown in Figure 9, suggests the PPR

approach again recovers to the true trajectory faster than the

PO case. Table III shows the average value of κ for 576

simulations involving various maneuvers in various wind

conditions. Note that the average magnitude of κ is lower for

the PPR approach than for the PO approach, particularly in

the case of noise where the PO approach suffers significantly,

as shown in Table II. This result is consistent with the

analysis of Section V-D, which suggests that the PO approach

is more sensitive to noise than the PPR approach.

TABLE III: Comparison of prediction correction time and κ

Parameter PPR PO
Prediction correction time (s) 4.7 7.1

κ without Noise 1.5 1.6
κ with Noise 1.7 3.3
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Fig. 8: κ-time graphs without noise

D. Sensitivity to error in variables

In the previous section, the turn rate of the threat aircraft is

computed using two different approaches. The resulting turn

rate estimates are affected by error in the position and roll

angle data. Here we consider sensitivity to these data. For the

PO approach, the turn rate is computed using (6). The error

in this turn rate estimate due to velocity and acceleration

errors (which in turn are due to position data errors) is

δωPO =
∂

∂ax

[ √
a2
x+a2

y√
v2
x+v2

y

]
δax +

∂

∂ay

[ √
a2
x+a2

y√
v2
x+v2

y

]
δay

+
∂

∂vx

[ √
a2
x+a2

y√
v2
x+v2

y

]
δvx +

∂

∂vy

[ √
a2
x+a2

y√
v2
x+v2

y

]
δvy

=
1√

a2x + a2y

√
v2x + v2y

(axδax + ayδay)

−
√
a2x + a2y

(v2x + v2y)
√
v2x + v2y

(vxδvx + vyδvy)

(7)

For the PPR approach, with the turn rate estimated as in (5),

the error in the turn rate estimate due to roll angle and

velocity error is

δωPPR =
∂

∂φ

[
g
√

1/ cos2 φ−1√
v2
x+v2

y

]
δφ

+
∂

∂vx

[
g
√

1/ cos2 φ−1√
v2
x+v2

y

]
δvx

+
∂

∂vy

[
g
√

1/ cos2 φ−1√
v2
x+v2

y

]
δvy

=
g

2V

tanφ

cos2 φ
√
1/ cos2 φ− 1

δφ

− g
√

1/ cos2 φ− 1

(v2x + v2y)
√
v2x + v2y

(vxδvx + vyδvy)

(8)

Note that δωPO depends on the acceleration data error, as

well as the velocity data error, as computed from the position

history. On the other hand, δωPPR depends only on the

velocity data error (along with roll angle error). A formal

error comparison was not performed, but simulations indicate

the PO approach is much more sensitive to typical data errors

than the PPR approach; see Table IV.

E. Trajectory prediction experiments

The prediction algorithm was also applied to the trajectory

data obtained in flight tests [16]. In all, sixteen segments

Fig. 9: κ-time graphs with noise

TABLE IV: Average turn rate error magnitude

Parameter PPR PO
Average Turn Rate Error Magnitude (deg/s) 0.9 4.8

of a sample trajectory which was obtained from flight tests

were considered (Figure 10) and the algorithms described

above were applied to each segment. Figure 10 shows two

of sixteen segments and the prediction algorithm is applied

to each path. The thick red curve represents the predicted

trajectory based on the PPR approach and the thick blue

curve is a predicted trajectory based on the PO approach.

A thin blue line represents the actual path. In this figure,

the PPR prediction is closer to the actual data than the PO

prediction. The κ-time graphs in Figure 11 also indicate the

PPR approach provides better prediction performance since κ
is generally smaller for the PPR approach. Table V shows the

TABLE V: Average magnitude of κ for flight tests

Parameter PPR PO
Average κ 7.3 8.7

average magnitude of κ from the flight tests we implemented.

The value for the two approaches is not as low as it was in

simulation. It is important to note that the eSPAARO did

not fly with a truly constant speed nor at a truly constant

altitude, as assumed in the CT model. In any case, the PPR

approach results in lower values for κ than the PO approach,

suggesting that trajectory prediction informed by orientation

estimates can be more accurate than prediction based solely

on position measurements.

Fig. 10: Extracted experiment trajectories

F. Avoidance simulation results

To check the avoidance performance based on the PPR

approach and the PO approach, a host aircraft running the
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Fig. 11: κ-time graphs of extracted trajectories

avoidance algorithm was added to the prediction simulation.

As described in the previous section, both the threat aircraft

and the host aircraft use the same motion model. Wind is

included in the simulation. The speed of both aircraft is

100 m/s, the total simulation time is 60 seconds, and the

trajectory prediction time is 10 seconds.

Figures 12 depicts the paths of a host and threat aircraft,

with the host aircraft successfully sensing and avoiding the

threat using the PO and PPR approaches, respectively, and

then recovering its original trajectory using the avoidance

algorithm.

Fig. 12: Avoidance simulations for the PO approach (left)

and PPR approach (right)

The representative examples shown in Figure 12 indicates

that avoidance based on the PPR approach is safer than

that based on the PO approach. As discussed earlier, PO

trajectory predictions for the threat aircraft are less accurate

and oscillate more than PPR predictions, making avoidance

more challenging using the PO approach.

VI. CONCLUSION

An algorithm was presented for predicting the trajectory

of a fixed-wing aircraft using vision-based estimates of the

aircraft orientation. The aircraft orientation is estimated by

identifying feature points and applying the POSIT algorithm.

The prediction method incorporates the orientation data into

a coordinated turn model for aircraft motion to predict the

trajectory. Prediction results compared favorably with results

based solely on the position history, both in accuracy and

speed of response to threat aircraft maneuvers, and the PPR

approach appears less sensitive to noisy data. Moreover,

in simulations of a simple avoidance algorithm, predictions

based on the PPR approach yielded better avoidance perfor-

mance than those based on the PO approach.

While results from analysis, simulation, and experiments

are promising, the vision-based prediction algorithm is de-

signed for a specific use case under restrictive assumptions

– constant speed and altitude of the threat aircraft. Ongoing

work aims to refine and improve the algorithm by relaxing

these assumptions and also by expanding the experimental

validation data set to include high quality air-to-air encounter

imagery. Additional challenges include extending the ap-

proach to multirotor UAS and to unconventional configu-

rations.
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